Neural Network Regression Based on Falsity Input
نویسندگان
چکیده
In general, only the truth input is used to train neural network. This paper applies both truth and falsity input, which is the complement of the truth input, to train neural network to solve regression problems. Four neural networks are created. The first two networks are trained using the truth input to predict the truth and falsity outputs based on the truth and falsity targets, respectively. The last two are trained using the falsity input to predict the truth and falsity outputs as well. In order to add more diversity, ensemble of neural networks is applied. Each component in the ensemble contains four types of neural networks created based on our proposed techniques. Aggregation techniques are proposed to provide more accuracy results. Three classical benchmark data sets from the UCI machine learning repository are used in our experiments. These data sets are housing, concrete compressive strength, and computer hardware. It is found that the four proposed networks improve the prediction performance when compared to backpropagation neural network and complementary neural networks. Keywords— Feedforward Backpropagation Neural Network, Ensemble Neural Networks, Complementary Neural Networks, Regression Problems, Truth Neural Network, Falsity Neural Network
منابع مشابه
Applying Falsity Input to Neural Networks to Solve Single Output Regression Problems
In this paper, both truth and falsity inputs are used to trained neural networks. Falsity input is the complement of the truth input. Two pairs of neural networks are created. The first pair of neural networks are trained using the truth input whereas the second pair of neural networks are trained using the falsity input. Each pair of neural networks are trained to predict degree of truth and d...
متن کاملCompressive Strength of Confined Concrete in CCFST Columns
This paper presents a new model for predicting the compressive strength of steel-confined concrete on circular concrete filled steel tube (CCFST) stub columns under axial loading condition based on Artificial Neural Networks (ANNs) by using a large wide of experimental investigations. The input parameters were selected based on past studies such as outer diameter of column, compressive strength...
متن کاملEVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS
In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...
متن کاملANN Based Modeling for Prediction of Evaporation in Reservoirs (RESEARCH NOTE)
This paper is an attempt to assess the potential and usefulness of ANN based modeling for evaporation prediction from a reservoir, where in classical and empirical equations failed to predict the evaporation accurately. The meteorological data set of daily pan evaporation, temperature, solar radiation, relative humidity, wind speed is used in this study. The performance of feed forward back pro...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کامل